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ABSTRACT

ASYMPTOTIC NORMALITY OF U-STATISTICS BASED '

ON TRIMMED SAMPLES ,

Let Xn1 <...< Xnn be an ordered sample of size n. We establish asymptotic

normality of U-statistics based on the trimmed sample X <...< X
n,[an]+1 - - n,n-[Bn]'

where 0 < c,$ < 1/2. This theorem and its multi-sample generalization are

illustrated by various statistics of importance for robust estimation of

location, dispersion, etc.

This unifies the flexibility of the class of U-statistics and the classical •

principle of rejection of outliers. In addition, as a tool in our treatment,

but also having broader interet, a uniform version of the central limit theorem

for U-statistics is provided.
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1. Introduction. For robust estimation of location, the ordinary sample

mean is too sensitive to outliers. A classical and successful alternative is - -

the trimmed mean, for which asymptotic normality was established by Bickel

(1965). As discussed by Bickel and Lehmann (1975). for example, the trimmed

mean remains relatively efficient with respect to the untrimmed mean even in the .

absence of outliers.

Viewing the trimmed mean as simply the ordinary mean defined on a trimmed

sample, we are motivated to consider other common statistics as well in this

regard. In this paper we study U-statistics in such fashion. The class of U-

statistics, introduced by Hoeffding (1948), contains a wealth of statistics of

interest In their own rights and also contains statistics which serve as

approximations to statistics of more complicated type. A very significant

broadening of the scope of robust statistical inference is achieved, therefore,

by consideration of the class of U-statistics on trimmed samples. ..

Specifically, the statistics we treat are defined as follows. Let

X1 ... X be an i.i.d. sample from a df F, let Xn1 <...< X denote the ordered1 n ml- - nn .

Xi's, let 0 < a,8 < 1/2, and put n 8  - n -[an]-[Bn]. Let h(xi ... x ) be a

"kernel" assumed (without loss of generality) to be symmetric in its arguments.

For each such kernel we consider the associated U-statistic defined on the

(a,$)-trimmed sample, i.e.,

n -11. )Una - o (mE h(X ... ),

naB m C ni1 mni "
naB

where CnaB denotes the set of m-tuples( I ...... ):[n*1<i <'<im < n-[Sn]}.

(The cases a > 0, B - 0 and a - 0, 6 > 0 could also be considered but will be

omitted for simplicity. The case a - B - 0 corresponds to ordinary U-statistics

based on full samples, for which there is already an extensive literature (see,

e.g., Serfling (1980), Chapter 5)).

AMS Subject Classifications Primary 62E20, Secondary 62G35

Key words and phrases : U-statistics, trimmed samples, robust inference,

nonparametric, uniform central limit theory.
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For m = 1 and the kernel h(x) = x, (1.1) gives the trimmed mean

-1n-[Bn3
(1.2) n, E.-

i-[-.n-+-

treated by Bickel (1965). For m - 2 and the kernel h(xl,x 2) I( x1 +x2>0) we

obtain a version of the Wilcoxon one-sample statistic treated by Saleh (1976).

Evidently, these and only one or two other cases of (1.1) have been previously

studied in the literature, despite the abundance of natural possibilities. For

example, with m - 2 and h(xltx 2) - (x1 -x2) /2, we obtain the statistic

2 -1 n-[Bn]
(1.3) S (n -1) r (X i 2 . .

i-[an]+1'

a quite natural robust analogue of the classical sample variance. Surprisingly, -..

this has not been examined previously, although a Winsorized version has been

treated by Jaeckel (1971) (see also Bickel and Doksum (1977), p. 375).

Other methods of using trimming to produce robustness have appeared in the

literature. For example, see the "doubly trimmed standard deviation" of Bickel

and Lehmann (1976), and a "trimmed standard deviation" introduced by Bickel and

Lehmann (1979) and treated theoretically by Janssen, Serfling and Veraverbeke

(1984). Also, consider the "trimmed U-statistics", produced by trimming on the

basis of ordered values of h(X ...,X ), which are a special case of the
1 mgeneralized L-statistics treated by Serfling (1984). The present development,

In which the trimming is applied directly to the sample values Xi, is perhaps

the most natural and reasonable way to implement a principle of rejection of

outliers.

In Section 2 we establish asymptotic normality for statistics of form (1.1)

(under suitable regularity conditions), thereby extending and unifying Bickel's

result for the trimmed mean and Hoeffding's result for the case of untrimmed

samples. We also cover the multi-sample case. The main results are given by .

Theorems 2.1 and 2.2. -
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Our method of proof utilizes recent work of Randles (1982) on U-statistics

based on kernels having unknown parameters. However, an alternate approach

consists of extension of Bickel's method for the trimmed mean. This is discussed -

in Remark B of Section 2. The approach entails proving a result which is of'

general interest, a uniform central limit theorem for U-statistics, extending -A

Parzen (1954). We present this result in the Appendix.

The remainder of the paper (Section 3) treats important examples : moment-

type statistics, Wilcoxon-type statistics and Gini-like measures of location and

spread. A number of interesting new statistics are examined.

2. General theorems. Our asymptotic normality result for the statistic

2
U na defined by (1.1) will involve mean and variance parameters V and a a

defined as follows. Corresponding to the given kernel h, we define for x,u,v e]R-

v v m-1
g(x;u,v) -(--a)-m I(u<x~v) f...f h(x,x, ....x M_1) R dF(x )

u u i.1

V V m

U(u,v) - Eg(X;u,v) = (-a-a) -m f... h(x I ... ,x) R dF(xl),

U U i=i i

A(u,v) Var g(X;u,v),

A(u,v) - -g(u;u,v),

and

B(u,v) - g(v;u,v).

Then we define

Pa8 u(F (a), F (-))

and

2 22
a m i (A + 2apj A -

2 Bta B +a(l-a) A2

aas as as as as aB

2+ 8(1-8) B + 2aR A B asa8B Aa8 Ba8'-.

where A = A(F- (a), F- (1-B)), etc.
.a.s"

'r % . f . &' - ,. - '-".'t- .5



ASSUMPTIONS.

(A) F has a density f which is continuous and positive at F (a) and F (1-0)

and is bounded in some 6-neighborhoods of F (a) and F (1-0);

(B) For some a < F (a) and b > F (1-8)

sup th(xi ... x) I <

F (1-0) F (1-$) n-1

(C) The function gE)-F 1 - h(x,x, .. x ) I dF(x is
F(a) F (a)

continuous at F(a) and F (1-8).

THEOREM 2.1. Let U nBbe given by (1.1). Assume conditions (A), (B) and

(C) and that a 2 > 0. Then

112 d 2
n (Un8~) *N(O,o )

The proof will utilize a series Of lemmas involving certain U-statistics

Closely related to U .aa For the given kernel h, and for each u < V E IR, we

define an associated kernel

O- - m (x, <.x)..

h(x ,...,x ;u'v) = 18a ~ 1 .. x < v) hx 1 m,

and we denote by U n(u,v) the ordinary (i.e., defined on the full sample) U-sta-

tistic based on this kernel.

Then we have

n -
(2.1) U n 8 f)(~~~ U (x x

naB in m n njfan]+1 'n~n-[en]

and we readily obtain
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LEMMA 2.1. Under condition (B),

(2.2) Un1 - Un(Xn, n]+ Xn + 0 (n 1 ...)
naS n nanl~ln-.[Bn.

Next we show that the leading term in (2.2) may be approximated by

TnB  U(F-(a), F- (1-8)) - +a ( . .
-na n ,a njan3+1 , n,n-[an)

LEMMA 2.2. Under conditions (A) and (B),

(2.3) Tna8 - Un (Xn[an] 1 Xnn_[BnJ) + o (n/2)

PROOF. We make direct application of Theorem 2.8 of Randles (1982), by

which (2.3) holds if Randles' Conditions 2.2 and 2.3 are fulfilled. First we

note that, by classical central limit theory for order statistics (or by (2.7)

and (2.8) below),

- -1 1 1/2(2.4) (Xn, Xn ) (F-(a), F (I-8))- 0 (n ).
n,[an)~l nn-[Bn] p

This is Randles' Condition 2.2 specialized to our setting. Next we note that by

condition (B) there exists M < - such that for all x1,...,x and all (u,v) in

some neighborhood of (F- (a), F- (1-)),

,X;-1 -1

(2.5) jh(x 1 ... x ;u,v) - h(x1 , ... x;F (a), F (1-0)) H( Mi

Now let K be a neighborhood of (F- (a), F (-8)) which is contained in the

rectangular neighborhood of (F -(a), F (1-5)) in which (A) and (B) hold. For

(u,v) C K and for a sphere 0 centered at (u,v) with radius d, such that DC K,

we have

,w> i.-



sup I hx .,x u' ,V' ) -h(x ,...,x ;u'v)
(U',v') E D M'*' n1

< ( 1 )i h(x11 ...,x ) 1[ Ilu-d~xi~u+d) HI I(u-d<xj <v~dJ

i-1 j*i -

E l (v-d~x <v~dl RI I[U-d<x <v+dJ].
i-1 - - j

Then, using (A) and (B), we obtain

Et sup Ih(X1,...,x ;u',v') -h(X ,...,X ;u'v) I
(u' , v' )E D 1 i

u+d v~d v~d v+d v+d v~d in
< in(l-8-a)~ [( f f .. 1 + f f .. f h H1 dF(x )

u-d u-d udvd u-d I- =

< 2m M 0(1-8-a) m[F(v~d)-F~u-d)] - ([F(u+d)-F(u-d)j+[Fcv+d)-Fcv-d)])

(2.6) < M d,

for suitable choice of constant M not depending on choice of D. By Handles' I2
Lemma 2.6, his Condition 2.3 follows from our (2.5) and (2.6). Thus our lemma

follows. 0

LEMMA 2.3. Under condition (B),

U (F (a1 ), F (1-8)) -18 E Cg(X ;F (in),F (l-0))-i 1n n i asB

i-1/

+o(n 112
P

PROOF. This is immediate from the projection theory of ordinary U-statis-

tics (see, e.g., Serfling (1980), Chapter 5). u
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LEMA 2.4i. Under condition (A) and (C),

n,[an)+1 n,n-[Bn) aB

-1 1 -112
- mA 8 [a-F (F (a))] + mB 8 [1-0-F (F (1-0))] o o(n )

where F denotes the usual sample df of V..o
nn

PROOF. By condition (A) and a result of Ghosh (1971) on Bahadur represen-

tation of order statistics, we have

-1
1 a -F (F (a)) -/

(2.7) X -F (0i- o (n )

and
1-B-F (F (1-B)) -/

(2.8) x - F 1(1-8) = 1+ o (nn,n-[Bn] r( 1-)

By conditions (A) and (B) again along with condition (C),

-1 m1- f(F (a))A as(u v) -(F (a),F (1-6))

and

-1 - -m f(F- (1-0))B
TV (u,v) -(F- (a),F- 1-B)) as,

Thus, by the multivariate version of Young's form of Taylor's theorem (e.g., an

immediate extension of Theorem C on page 45 of Sertling (1980)),

(2.9) Wdu,v) I-a m f(F (a)) A (u -F (a))

+ m f(F- (1-W) B as(v-F (1-0))

+ (11 (u,v) -(F (a), F (1-B))ID

Applying (2.4), (2.7) and (2.8) in (2.9), we obtain the desired result. o
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PROOF OF THEOREM 2.1. Define

,(x;u,v) - m ([g(x;u,v) - j(u,v)] + A(u,v)EF(u) - Ifx<u)]

+ B(u,v)rF(v) - Ifx<v)J].

Then, combining Lemmas 2.1 - 2.4, we may write

- n -1 -- 1/2
U -p z -n z *(XI;F (a),F (1-8)) + o (n- ).

i-1

-1 -1 2
Finally, note that *(X ;F (a), F (1-B)) has mean 0 and variance a. 2

REMARK A. By Lemmas 2.1 and 2.2, we may write

* * (-1/2
(2.10) U nB a$ Un +0n + o p(n

where U is an ordinary U-statistic with mean 0 and asymptotic variance

2
parameter m A 8 , and 0 is a function of (two) order statistics. It can happen

a8 n
2

that a > 0 but one of these two components is negligible, namely U if A 0

and 0n if A CI = B B - 0. The case that U is non-negligible (i.e., A a > 0) can

occur even when the ordinary U-statistic based on the original kernel h is

degenerate. That is, a U-statistic which has nonnormal limit distribution when

defined on the full sample can have a normal limit distribution when defined on

a trimmed sample. o

It is straightforward to extend Theorem 2.1 to the case of multi-sample

U-statistics. For simplicity, we consider the 2-sample situation. Let

X I .... .,Xn be an i.i.d. sample from df F1 and Y1 .... ,¥n i.i.d. from F . Let
1 n1 2 2

h(x ....x y 1 ... ,y) be symmetric within blocks and consider

)-

Ii

n I



(2.11) U -2 n [il[n-
nB In

h (X ,..X Y )YC n i n i 'n. 1 "n

where C nB m i"* C'L 1 "s...<m <nc 1 -[B( I.< n
1 21

and [a 2 n 2]+j<.. <jm n 2[ 2 n 2 31.

For u~v E IR and u'(<v' C ]R, define associated kernels

h(x1  .. 9x m1;y 1 9, ... ,yM ; u,v;u' ,v' )

a 11 ( i~-~j h(xi .., x m;y1 9 .. pyi-192 1 2

I(u~x I .. . x m< V1 u <_ .. '
-1 In 2

Denote by g (x;u Iv, Vu',vI the conditional expectation of this kernel given ,X

and by g 2 (y;u,v,u' ,v' ) the conditional expectation given Y-y. Put

p(u,v,u' ,v' ) - Eg1 (X1 ;u,v,u' ,v' ) - Eg (Y1 ;u,v,u' v )l

1(u,v,u',v') -Varg1(X1;vulll

aind

A Cu v,u' ,v') -Var g (Y ;uvv,u' ,v').

2' 2 1

Let ~,A I A denote the evaluations Of these quantities at1 2

((a),F 1 (1-8 ), FF(-
1 1 1 F 2 ( 2) F2  2-Bl

Further let A1, B1, A2, B 2 denote the par-tial derivatives of IJ(u,v,u',v' ) w.r.t.

u,v,u' and v' respectively, evaluated at CF 11 (a 1) F 1 (1-0~ 1 2 1 2~ F I-
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Set A1 =Ai/mifi(F1(zi) and B /mif (1- ) for 1-1,2, assume that

n~n2 (1-1,2) as min(n1 ,n)

and define

2

2 m2x I 1 ,£ [A I 2a jA i -2$ pB, CL (1-a )A

+ ai-B)B + 2a ABi] "

Then we have

THEOREM 2.2. Assume that F (1-1,2) and h satisfy (analogues of) conditions

2
(A), (B), (C) and assume a > 0. Then, as min(n,n 2 ) 2 ® such that

n /(n1 +n2) 4 A (i =1,2),

112 d 2
(n +n (U 1j) N(O,o2).

12 na B

The proof is similar to that of Theorem 2.1. Also, from the above formula

for the asymptotic variance, it is easy to recognize what the asymptotic

variance parameter should be in the c-sample case for c > 2.

REMARK B. Bickel (1965), in treating the trimmed mean, used a different

method of proof, which was also adapted and followed by Saleh (1976) with some

gaps in the development. Such an approach also can be followed for our Theorem

2.1, as follows. Conditional on X and X , the statistic U is'n,[an]l n,n-[Bn]+T1 nc

distributed as an ordinary U-statistic based on an i.I.d. sample of size n
-B8

from a certain df d-pending on the given two order statistics. By a uniform CLT

for U-statistics (see Appendix), we can apply Theorem 2 of Sethuraman (1961) and

complete the proof in the manner of Bickel (1965). o
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3. EXAMPLES.

3.1. Central moments

Here we consider robust (i.e., .rimmed sample) versions of the classical

measures of location, dispersion, skewness, kurtosis, etc. Since all central

moments may be represented as U-statistics (Hoeffdlng (1948), p. 295), Theorem

2.1 yields the appropriate results. In particular, let us symmetrically trim

the sample (a-B) and consider the trimmed mean (1.2) and the trimmed variance

(1.3). Let us also confine attention to df's which are symmetric about 0. Then

Theorem 1.2 yields

1/2- d 2
(3.1) n X N(Oo 1 (ci-a)),

with
F-1

2 -2 [EF (1-0)2  -1 2
(3.2) 01(a,-) (1-2a) x f(x)dx + 2a(F (c ))2]F- (a) "' "

which corresponds to Bickel (1965), and

1122 d 2(3.3) n S N(i(a,1-a), o(a,l-a)),naa 2

with- F-1~F(1-a)x~~ ""
12

(3.4) p(o,1-i) = (1-2a) - 1a) 2

and

2 -2 f (1-) F(1-a)2 2
(3.5) a2(a,l-a) (1-2a)-2 -1 X f(x)dx - (f -1 x f(x)dx)F (a) F (a)

-1 2 f 1-a) 2-1 4I
(F W) -1 x f(x)dx + 2a(1-a)(F (c)) I.

F (ci)

This explicit result for the asymptotic variance makes it possible to compare

S2  with competitors such as the usual sample variance and the mean absolute

deviation, using an appropriate asymptotic relative efficiency criterion based

on asymptotic variance parameters.
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3.2. Wilcoxon-like statistics

In the one-sample case, assume F has density f symmetric about A and

consider testing A - 0 versus A > 0. This can be formulated as a problem of

testing P{X 1 + X > 0) - 1/2 versus PX 1 + X > 0) > 1/2, with corresponding

test statistic

U - (f)-1 E I(X i + XJ > 0),

n 2 1<1<j<n

which is asymptotically equivalent to the one-sample Wilcoxon statistic.

Trimming leads to consideration of

U ( n-2[an])-1 E ni * Xnj > 0).
2 [cn]+1<i<jn-[ n] m

From Theorem 2.1 it follows by routine calculations that, under the null- -

hypothesis A - 0,

d112 1 /)*NO +4a2).-
(3.6) n (Una- 1/2) + N(0, 2

1/2 3(1-2ai)

a result previously found by Saleh (1976).

In the two-sample case, let P - ((F,G) F(x) < G(x), all x) and consider

testing F - G versus F * G, or in turn consider testing P[X < Y ) - 1/2 versus

Pfx I < Y < 1/2. The usual Wilcoxon-Mann-Whitney statistic has the following .

formulation in the trimmed-sample case
n -[an n -[ an

1 1<12n

Unl E E I(X .<Jl
. 2 (n -2[an ])(n -2[an ]) i-[anl]+1 J-Can +1 n 2 1 -

1 1 2 2 1 -fci2 >

which can be studied by our Theorem 2.2, which yields

1/2 1 d 1 I+4a .)
(3.7) n (Un - -) * 1(0

n1 n a 2 ' (-A)2
1 2 12(1-2a)

under the null hypothesis, where n - nl+n 2 and A - lim n /n.

21
This result can also be found in Hettmansperger (1968).
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3.3. Gini-like measures of location and dispersion

For estimating location, Heilmann (1980) proposed to modify the sample

mean, which can be expressed as

- n-i•°

X - (2) E median (XiX)1<i<J<n

to

L -(3) E median (X,xx).
I<i<j<k<n

In similar vein, we consider as competitors of the trimmed sample mean the

statistics U na of the form (1.1) corresponding to the kernels given by

(3.8) h(x1 ,...,x) - median (x , ... ,x)

for m - 3,4 .... Asymptotic normality is provided by Theorem 2.1. Let us note

that naive computation of the statistic U corresponding to (3.8) would
na

require O(nm) steps. It is of interest, therefore, that for the kernel (3.8)

U may also be represented as an L-statistic, .

n-[n].
(3.9) U - E c1 Xm

nciB n-r nnj+

awhere, with ( - 0 if a < b, ._

1 n -1 i-[an]-1 n-[on]-i i-[(an]-1 n-[8n]-i)]
(3.10) cni 1 a5) [([-1])( [] )+( [T ]  ) n([ ]

2m2 2 2 2

Thus, given the c 's (which itself is a computational problem, of course), oneni

can compute the statistic via the formula (3.9) in O(n log n) steps.

For estimating dispersion, Heilmann (1980) proposed to modify Gini's mean

difference, which is the U-statistic based on kernel h(x1,x2) - - x2 f , but

which also can be expressed as

• p .

. . .. .
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G n )-I range (Xi,X)-
on 2 1i<j<n

* n -I

(3.12) G: - C3) E range (X, Xi, Xk).
3 1<i<j<k'n k

In similar vein, we consider as competitors to Gn and Gn the class of statistics

U n8 of form (1.1) corresponding to the kernels given by

(3.13) h(xI , ..,x) - range (xI ...,x)

for m - 3,4 ...... Asymptotic normality is provided by Theorem 2.1.
It is well-known that the statistic G may be written as an L-statistic

(see, e.g. Serfling (1980)) and this is shown by Heilmann (1980) to be true also

for . It is easily seen that in fact, this is true in general for the
n

statistics U based on the kernel (3.13), including the case a - 8 - 0

(untrimmed sample). The relevant cni s for a representation of form (3.9) are

found to be

nL
n -I -[an-1 (n-Ln]-i)

(3.14) cni m C8) H m-1 m-1

An alternative way of generalizing the classical Gini's mean difference is [

by considering the class of U-statistcs based on the kernels of fcrm

(3.15) h(x1 ,x2 ) - x -X2 Ip

for p > 0. This gives the "p-th power measures" considered by Bickel and

Lehmann (1979). However, results of Boos (1979) indicate that the case p - I is

highly competitive to the cases p * I. It is of interest to examine the class

of" "p-th power measures" on trimmed samples, which is now possible via Theorem

2.1.

". *
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Appendix a uniform CLT for U-statistics

Here we provide a useful extension to U-statistics of the uniform CLT for

sample means given by Parzen (19541). Let X. ,... IX be independent ]R-valued1 n

random variables having common df F(x;o), where 0 E ()C I p 1 1, and let Un

denote the usual U-statistic based on a given symmetric kernel h(x ... xm

Define

p(e) E Eh,

g(x,O) - E 0 h(X9 .. )X -X l I X)

and

ao (e) - Var gkX,A).

THEOREM. Assume

2
(1) Eeh <(K < ~,all 0 E 0,

and I
2

(2) a (0) > L > 0, all 0 c 0,

for fixed constants K and L, and

(3) lim E 1[g(X e) -PCO)] Ifix I> MI) -0, uniformly in OE e.

Then, uniformly in e E 0,

1/2
sup JPfn (U -p(e))mo(e) < X) - ,(x) I 01)

x n

PROOF. Using the projection lemma as in Hoeffding (19418), we decompose

n 12(U - p(O))/mo(e) into a leading term which is a properly normalized sum of
n

I.i.d. r.v.'s and a remainder term. By a uniform version or Slutzky's Theorem

(Parzen (19541), Theorem 18D), it suffices to show that, uniformly in 0 E 0, the

leading term has a normal limit and the remainder term tends to 0 in

probability.
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The former is obtained from the uniform normal convergence theorem for sample
L

means (Parzen (1954), p. 38), while the latter follows by an application of

Chebyshev's inequality. a
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